ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Сигнализаторы оксида углерода и горючих газов СТГ-1

Назначение средства измерений

Сигнализаторы оксида углерода и горючих газов СТГ-1 (далее – сигнализатор) предназначены для выдачи сигнализации о превышении установленных пороговых значений оксида углерода и довзрывоопасной концентрации горючих газов - метана или пропан-бутановой смеси в воздухе.

Описание средства измерений

Сигнализаторы представляют собой стационарные автоматические одно- или двухканальные приборы непрерывного действия.

Конструктивно сигнализаторы, в зависимости от исполнения, бывают двух- и трехблочными. Сигнализаторы состоят из блока контроля и сигнализации (далее - БКС) со встроенным электрохимическим датчиком СО и одного или двух выносных блоков термохимического датчика СН (далее - БД).

БД и БКС выполнены, в пластмассовом корпусе. На передней панели БД и БКС расположены индикатор зеленого цвета свечения «ВКЛ», индикаторы красного цвета свечения «САЗ», индикатор желтого цвета свечения «ОТКАЗ»; на передней панели БКС расположена кнопка отключения исполнительных устройств «СБРОС».

Под передней панелью БКС расположены защитная крышка, опломбированная наклей-кой предприятия-изготовителя (показано на рисунке 2), индикаторы единичные зеленого цвета К1 и К2, кнопки для градуировки сигнализатора, порт управления «В/О» и группы клеммных контактов - «230V, 50 Hz», «ВНЕШНЯЯ АВАРИЯ», «КЛАПАН 230В», «КЛАПАН 40В», «ПОРОГ1-СО», «ПОРОГ2-СО», «ПОРОГ-СН», «КОНТРОЛЬ».

Под передней панелью БД расположены защитная крышка, опломбированная наклейкой предприятия-изготовителя (показано на рисунке 2), группа клеммных контактов для подключения электропитания и выдачи сигнала о включении сигнализации АВАРИЯ-СН, разъем «УПРАВЛ.», для установки значения порога аварийной сигнализации

Сигнализаторы имеют:

- выходной сигнал напряжения постоянного тока от 0,4 до 2,0 В, для контроля метрологических характеристик по каналу оксида углерода, клеммная группа «КОНТРОЛЬ»;
- релейный выходной сигнал типа «сухой контакт» (два уровня срабатывания), клеммные группы «ПОРОГ1-СО», «ПОРОГ2-СО»;
- релейный выходной сигнал типа «сухой контакт» (один уровень срабатывания), клеммные группы «ПОРОГ-СН»

Исполнения сигнализаторов приведены в таблице 1.

Таблица 1

Условное наименование	Обозначение	Количество блоков датчиков СН
СТГ-1-1	ИБЯЛ.413411.056	1
СТГ-1-2	ИБЯЛ.413411.056-01	2

Внешний вид сигнализаторов показан на рисунке 1.

Рисунок 1- Внешний вид сигнализаторов

Схема пломбировки сигнализаторов от несанкционированного доступа и обозначение мест для нанесения гарантийных наклеек приведена на рисунке 2.

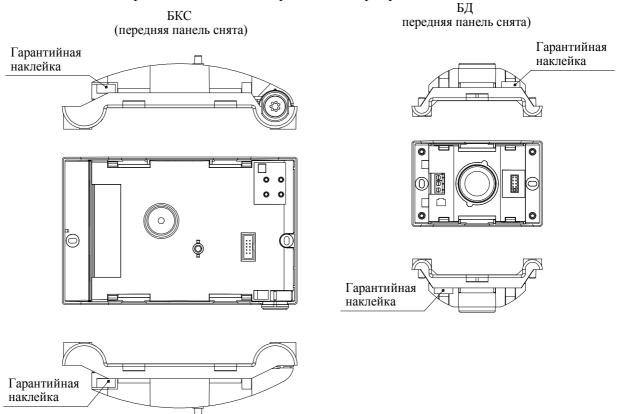


Рисунок 2 - Схема пломбировки сигнализаторов от несанкционированного доступа и обозначение мест для нанесения гарантийных наклеек

Программное обеспечение

Сигнализаторы имеют встроенное программное обеспечение (далее - ПО), разработанное предприятием-изготовителем специально для выдачи сигнализации о превышении установленных пороговых значений оксида углерода и довзрывоопасной концентрации горючих газов.

Структура ПО представлена на рисунке 3 Основные функции ПО:

- измерение и расчет значений массовой концентрации оксида углерода;
- измерение входного электрического дискретного сигнала по каналу горючих газов;
- выдачу световой и звуковой сигнализации;
- формирование выходного напряжения постоянного тока, пропорционального содержанию массовой концентрации оксида углерода;
- формирования управляющего воздействия для включения (отключения) исполнительных устройств.

Tucyhok 3 - Cipykiypa iic

Идентификационные данные ПО

Идентификационные данные ПО приведены в таблице 2

Таблица 2

Наименование ПО	Идентифи-	Номер вер-	Цифровой идентификатор ПО	Алгоритм
	кационное	сии (иденти-	(контрольная сумма метрологиче-	вычисления
	наименова-	фикацион-	ски значимой части ПО (вторая и	цифрового
	ние	ный номер)	пятая часть идентификационного	идентификатора
		ПО	кода))	ПО
ПО сигнализа- торов СТГ-1	1.1	A60925C2F571B3A8CED07C0FB29	MD5	
		4FCA0		

Уровень защиты ПО от непреднамеренных и преднамеренных изменений соответствует уровню защиты «А». Не требуется специальных средств защиты, исключающих возможность несанкционированной модификации, обновления (загрузки), удаления и иных преднамеренных изменений метрологически значимой встроенной части ПО СИ и измеренных данных.

Метрологические и технические характеристики

Канал оксида углерода	
Диапазон измерений массовой концентрации, мг/м ³	от 0 до 200
Пределы допускаемой основной абсолютной Дд погрешности на участке	
диапазона измерений от 0 до 20 мг/м^3 , мг/м ³	±5
Пределы допускаемой основной относительной бд погрешности на уча-	
стке диапазона измерений от 20 до 200 мг/м^3 , %	± 25
Пределы допускаемой вариации выходного сигнала	0,5 Дд (бд)
Порог сигнализации ПОРОГ1-СО, мг/м ³	20
Порог сигнализации ПОРОГ2-CO, мг/м ³	100
Пределы допускаемой дополнительной погрешности сигнализаторов при	
изменении температуры окружающей среды от температуры, при кото-	
рой определялась основная погрешность, на каждые 10 °C, на участке	
диапазона рабочей температуры:	
- от минус 10 до плюс 45 °C	0,5 Дд (бд)
- от 45 до 50 °C	1,5 Дд (бд)
Пределы допускаемой дополнительной погрешности в долях от преде-	
лов допускаемой основной погрешности при изменении атмосферного	
давления от номинального значения давления	
$(101,3 \pm 4)$ кПа $((760 \pm 30)$ мм рт.ст.)	0,5
Пределы допускаемой дополнительной погрешности в долях от преде-	
лов допускаемой основной погрешности при изменении относительной	
влажности анализируемой среды от номинального значения 65 % при	0,5
температуре 25 °C	
Канал горючих газов	
Диапазон сигнальных концентраций сигнализаторов в условиях эксплуа-	
тации, % НКПР, при установленном значении порога сигнализации	
АВАРИЙНАЯ-СН, равном:	
- 10 % HKПP	от 5 до 19
- 20 % НКПР	от 15 до 31
Пределы допускаемой абсолютной погрешности Дд, % НКПР	± 5
Порог сигнализации ПОРОГ-СН, % НКПР	10 или 20
Примечания	

- 1 Поверочным компонентом сигнализаторов по каналу горючих газов является метан (СН₄).
- 2 Согласно ГОСТ Р 51330.19-99, 100 % НКПР соответствует объемной доли метана 4,40 %. 3 Допускается по заказу потребителя установка значений порогов сигнализации, отличных от указанных.

Номинальная статическая характеристика преобразования сигнализаторов по каналу оксида углерода имеет вид:

$$U = 0.4 + K_{\Pi} \cdot C_{BX},$$

где U - значение напряжения постоянного тока на выходе «КОНТРОЛЬ», В;

Свх – содержание оксида углерода на входе сигнализатора, $M\Gamma/M^3$;

Kn – номинальный коэффициент преобразования, равный 0,008 B/(мг/м³).

Выходной сигнал выхода «КОНТРОЛЬ» напряжения постоянного тока, В от 0,4 до 2,0 Номинальное время установления сигнала на выходе «КОНТРОЛЬ» $T_{0.9\text{ном}}$, с 60

10

Время срабатывания сигнализации при подаче на вход сигнализаторов газовоздушной смеси с содержанием определяемого компонента, в 1,6 раза превышающим установленное пороговое значения, с, не более:

установленное пороговое значения, с, не более:	
- по каналу горючих газов	15
- по каналу оксида углерода	45
Уровень звукового давления, создаваемого звуковой сигнализацией,	
по оси акустического излучателя на расстоянии 1 м, дБ, не менее	70
Параметры электропитания от сети переменного тока:	
 напряжение, В от 150 до 25 	53
- частота, Γ ц 50 ±	: 1
Потребляемая мощность, В·А, не более	10
Рабочие условия эксплуатации:	
- диапазон температуры окружающей среды, °C от минус 10 до плюс 5	50
 диапазон атмосферного давления, кПа (мм рт. ст.) от 84 до 106,7 (от 630 до 80 	0)
- диапазон относительной влажность, %:	
- для БКС при температуре 30 °C от 30 до 9	95
- для БД при температуре 40 °C от 30 до 9	95
- производственная вибрация с частотой, Гц от 10 до 5	55
амплитудой, мм, не более 0,3	35
- рабочее положение - вертикальное, угол наклона в любом направлении не более 20	0°
- скорость потока воздуха в месте установки сигнализатора, м/с, не более	2
Габаритные размеры сигнализаторов (длина, ширина, высота), мм, не более:	
- БКС 195х60х12	20
- БД	70
Масса, кг, не более:	
- БКС	1
- БД),5
Средняя наработка на отказ сигнализаторов в условиях эксплуатации,	
(при этом допускается замена ЭХД и ТХД, выработавших свой ресурс), ч, не менее 30 0)00
Средний срок службы (с учетом замены ЭХД и ТХД,	

Степень защиты сигнализаторов по ГОСТ 14254-96 – IP30.

По способу защиты персонала от поражения электрическим током сигнализаторы относятся к классу II по Γ OCT 12.2.007.0-75.

Сигнализаторы относятся к изделиям третьего порядка по ГОСТ Р 52931-2008.

Сигнализаторы относятся к оборудованию класса Б по ГОСТ Р 51522-99.

Знак утверждения типа

Знак утверждения типа наносится на табличку (расположенную на задней крышке БД и БКС) методом фотохимпечати и на титульный лист (центр листа) руководства по эксплуатации типографским способом.

Комплект средства измерений

Сигнализатор оксида углерода и горючих газов СТГ-1 (согласно исполнению) – 1 шт.

Руководство по эксплуатации – 1 экз.

Методика поверки – 1 экз.

выработавших свой ресурс), лет, не менее

Ведомость эксплуатационных документов - 1 зкз.

Ведомость ЗИП – 1 шт.

Комплект ЗИП (согласно ведомости ЗИП) – 1 шт.

Поверка

осуществляется по документу «Сигнализаторы оксида углерода и горючих газов СТГ-1. Методика поверки». ИБЯЛ.413411.056 МП, утвержденному руководителем ГЦИ СИ ООО КИП «МЦЭ» 02.02.2011~г.

Основные средства поверки:

- ГСО-ПГС по ТУ 6-16-2956-92, в баллонах под давлением состава СО-воздух (номера в Госреестре ГСО-ПГС 3847-87, 5004-89, 7590-99);
- Γ CO- Π ГС по ТУ 6-16-2956-92 (изм.5), в баллонах под давлением состава СН₄-воздух (номера в Γ CO- Π ГС 3904-87, 3905-87).

Сведения о методиках (методах) измерений

Методы измерений описаны в руководстве по эксплуатации «Сигнализаторы оксида углерода и горючих газов СТГ-1» ИБЯЛ.413411.056 РЭ.

Нормативные документы, устанавливающие требования к сигнализаторам оксида углерода и горючих газов СТГ-1

- 1 ГОСТ 8.578-2008 ГСИ. Государственная поверочная схема для средств измерений содержания компонентов в газовых средах.
- 2 ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.
- 3 ГОСТ 27540-87 Сигнализаторы горючих газов и паров термохимические. Общие технические условия
- 4 ГОСТ Р ЕН 50194-2008 Газосигнализаторы электрические для детектирования горючих газов в жилых помещениях. Общие требования и методы контроля
 - 5 ГОСТ 14254-96 Степени зашиты, обеспечиваемые оболочками (Код IP).
- 6 ГОСТ Р 51522-99 Совместимость технических средств электромагнитная. Электрическое оборудование для измерения, управления и лабораторного применения. Требования и методы испытаний
- 7 ГОСТ Р 52319-2005 Безопасность электрического оборудования для измерения, управления и лабораторного применения. Часть 1. Общие требования.
- 8 ГОСТ Р 52931-2008 Приборы контроля и регулирования технологических процессов. Общие технические условия.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по обеспечению безопасных условий и охраны труда; осуществление производственного контроля за соблюдением установленных законодательством Российской Федерации требований промышленной безопасности к эксплуатации опасного производственного объекта.

Изготовитель

ФГУП СПО «Аналитприбор», Россия, г. Смоленск

214031, ул. Бабушкина, 3. Телефон: 8 (4812) 31-12-42 Факс: 8 (4812) 31-75-16

e-mail: <u>info@analitpribor-smolensk.ru</u>. <u>http://www.analitpribor-smolensk.ru</u>

Испытательный центр

Государственный центр испытаний средств измерений ООО КИП «МЦЭ» 125424 г. Москва, Волоколамское шоссе, 88, стр. 8

тел: (495) 491 78 12, (495) 491 86 55 E-mail: <u>sittek@mail.ru</u>, <u>kip-mce@nm.ru</u>

Аттестат аккредитации – зарегистрирован в Госреестре СИ РФ № 30092-10.

Заместитель Руководителя Федерального агентства по техническому регулированию и метрологии

Е.Р. Петросян

М.п «___» 2011 г.